# 150. Interaction of Boron Trihalides with Aryl Phosphates and Phosphorochloridates. 

By M. J. Frazer, W. Gerrard, and J. K. Patel.

Aryl phosphates form complexes with boron halides, $(\mathrm{RO})_{3} \mathrm{P}=\mathrm{O}, \mathrm{BX}_{3}[\mathrm{R}=$ $\mathrm{Ph}, m$ - or $p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, 2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or (except for the last two) F$]$. The good thermal stability is in marked contrast with the instability of the complexes when $\mathrm{R}=$ alkyl and $\mathrm{X}=\mathrm{Cl}$. There are no marked substitution effects, except that the acceptor power is $\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>$ $\mathrm{BF}_{3}$, in accord with infrared spectroscopic data which point to the structure $(\mathrm{RO})_{3} \mathrm{P}=\stackrel{\delta-}{\mathrm{O}}-\mathrm{BX}_{3}$. The complexes, $(\mathrm{RO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}, \mathrm{BCl}_{3}$ and $\mathrm{RO} \cdot \mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}, \mathrm{BCl}_{3}$, are less stable, and for them infrared data do not support $\mathrm{P}=\mathrm{O}$ co-ordination to boron.

Correlations with boron trihalide-triphenyl phosphite systems are discussed.

Investigations into the mutual replacement of an alkoxyl or aryloxyl group attached to one non-metal, and halogen attached to another have shown that in alkoxysilanephosphorus halide, ${ }^{1}$ alkoxysilane-boron trichloride, ${ }^{2}$ and triphenyl phosphite-boron trihalide ${ }^{3}$ systems mixtures of halogeno-esters are with certain exceptions primarily produced, the non-metals remaining in separate compounds. Thus triphenyl phosphite ${ }^{3}$ and boron trichloride at temperatures above about $-10^{\circ}$, form diphenyl phosphorochloridite, phenyl phosphorodichloridite, and phosphorus trichloride in proportions depending upon the relative amounts of reactants and the conditions. Phenyl dichloroborinate and diphenyl chloroboronate were formed as intermediates which afforded triphenyl borate by redistribution during distillation. There was always a drift towards phosphorus trichloride and triphenyl borate, which did not interact even at $80^{\circ}$. In marked contrast, triethyl phosphate gave a complex, ${ }^{4}(\mathrm{EtO})_{3} \mathrm{P}=\mathrm{O}, \mathrm{BCl}_{3}$, at $-80^{\circ}$, which slowly evolved ethyl chloride at room temperature, the evolution being completed at higher temperatures, and at no stage were there chloro-esters analogous to those in the phenyl phosphite system. Finally, boron phosphate was obtained.

It is now reported that aryl phosphates form complexes, $(\mathrm{RO})_{3} \mathrm{P}=\mathrm{O}, \mathrm{BX} \mathrm{B}_{3}[\mathrm{R}=\mathrm{Ph}$, $m$ - or $p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, 2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or (except for the last two) F ] (cf. Table 1). The complexes were easily hydrolysed, the fate of the $\mathrm{BX}_{3}$ part being the same as that of the trihalide if alone. Thermal behaviour of the complexes was very different from that of those in which R is alkyl and $\mathrm{X}=\mathrm{Cl} .^{4}$ Thus at $100^{\circ}$ the complex $(\mathrm{PhO})_{3} \mathrm{P}=\mathrm{O}, \mathrm{BCl}_{3}$ was unchanged for 5 hr .; at $200^{\circ}(3 \mathrm{hr}$.) there was a small loss in weight, but little change in content of easily hydrolysed chlorine. At higher temperatures there was decomposition, rather than dissociation. Similar remarks apply to the complexes where $\mathrm{R}=m-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ or $2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ and $\mathrm{X}=\mathrm{Cl}$. When $\mathrm{R}=\mathrm{Ph}$ and $\mathrm{X}=\mathrm{F}$ or Br , there was little change at $300^{\circ}$ (about 3 hr .). However, when heated at 0.2 mm . the complex $(\mathrm{PhO})_{3} \mathrm{P}=0, \mathrm{BCl}_{3}$ gave triphenyl phosphate in $89 \%$ yield. Butan-1-ol caused ready fission of the co-ordinative bond in this complex or the $m$-tolyl analogue, the triaryl phosphate, hydrogen chloride, and tributyl borate being formed.

Effects of substituent were not marked but in general the order of acceptor power was $\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}{ }^{5}$ notably since the chloroaryl phosphates did not form complexes with boron trifluoride. This order was also supported by infrared spectroscopy.

Infrared Spectra.-In the spectra of the complexes, the band at $1296-1312 \mathrm{~cm}^{-1}$

[^0]assigned to the $\mathrm{P}=\mathrm{O}$ absorption in a triaryl phosphate, ${ }^{6}$ and the band at $959-970 \mathrm{~cm} .^{-1}$ assigned to the $(\mathrm{P}-\mathrm{O})-\mathrm{C}$ absorption ${ }^{7}$ were not present. Instead there was a new band at $1027-1050 \mathrm{~cm} .^{-1}$. The frequency, $1182 \mathrm{~cm} .^{-1}$, assigned to $\mathrm{P}=\mathrm{O}$ in triphenylphosphine oxide was shifted to $1073 \mathrm{~cm} .^{-1}$ when the complex with boron trichloride was formed. Further, the $\mathrm{P}=\mathrm{O}$ frequency, $1258 \mathrm{~cm} .^{-1}$, for tri-isobutyl phosphate was shifted to $1133 \mathrm{~cm} .^{-1}$ in the boron trichloride complex. ${ }^{8}$

Table 1. 1:1 Boron trihalide-triaryl phosphate complexes, $(\mathrm{RO})_{3} \mathrm{PO}, \mathrm{BX}_{3}$.

| No. | R in ( RO$)_{3} \mathrm{PO}$ | Weight (g.) | $\underset{\text { (c.c.) }}{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$ | $\underset{\mathrm{X}}{\mathrm{BX}_{3}}$ | Yield of complex |  | M. p. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | g . | \% |  |
| 1 | $\mathrm{Ph} \ldots . . . . . . . . .$. | 16.78 | 30 | Cl | 22.5 | 98.5 | 86-90 ${ }^{\circ}$ |
| 2 | $m-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad \ldots$ | 11.05 | None | ," | 14.25 | 96.7 | liq. |
| 3 | $p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad \ldots$ | $10 \cdot 00$ | 15 | " | 12.98 | 98.5 | 125-130 |
| 4 | $p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {a }}$ a $\ldots$ | 8.59 | 30 | ," | 10.74 | 98.2 | 90-94 |
| 5 | $2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{a}$ | $9 \cdot 11$ | 30 |  | 10.55 | $95 \cdot 0$ | 86-90 |
| 6 | $\mathrm{Ph}^{\text {b }}$........... | $7 \cdot 68$ | 30 | Br | 13.35 | 98.2 | 86-90 |
| 7 | $m$-Me $\cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad \ldots$ | 11.00 | None | ,, | 17.50 | $97 \cdot 6$ | liq. |
| 8 | $p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad \ldots$ | 7.50 | 15 | ," | 12.40 | $98 \cdot 4$ | 131-135 |
| 9 | $p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {b }}$, $\ldots$ | 6.86 | 25 | ," | 10.75 | 98.9 | 95-104 |
| 10 | 2,4- $\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{b} \ldots$ | 6.38 | 20 |  | $9 \cdot 23$ | 98.2 | 98-104 |
| 11 | $\mathrm{Ph}^{\text {b }}$........... | 16.31 | 30 | F | 19.42 | 98.6 | 85-88 |
| 12 | $m-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad \ldots$ | 18.42 | None | " | 21.75 | 99.7 | liq. |
| 13 | $p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ | $9 \cdot 21$ | 20 | ," | 10.6 | $97 \cdot 2$ | liq. |

a Added to boron trichloride in n-pentane ( 20 c.c.). ${ }^{b}$ Dissolved in chloroform and precipitated by pentane.

|  | Found (\% |  |  |  |  | Required (\%) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | C | H | Hal | P | B | C | H | Hal | P | B |
| 1 | $48 \cdot 4$ | $3 \cdot 9$ | $23 \cdot 4$ | $6 \cdot 7$ | $3 \cdot 0$ | $48 \cdot 5$ | $3 \cdot 9$ | $24 \cdot 0$ | $7 \cdot 0$ | $2 \cdot 4$ |
| 2 | - | - | $20 \cdot 9$ | $6 \cdot 0$ | $2 \cdot 7$ | - | - | 21.9 | $6 \cdot 4$ | $2 \cdot 2$ |
| 3 | - | - | $21 \cdot 3$ | 6.2 | $2 \cdot 2$ | - | - | 21.9 | 6.4 | $2 \cdot 2$ |
| 4 | $39 \cdot 4$ | 2.9 | 19.7 | $5 \cdot 3$ | $2 \cdot 0$ | $39 \cdot 5$ | $2 \cdot 2$ | $19.4{ }^{\circ}$ | $5 \cdot 7$ | $2 \cdot 0$ |
| 5 | 32.45 | $2 \cdot 1$ | $17.0{ }^{\text {c }}$ | $4 \cdot 4$ | 1.8 | $33 \cdot 2$ | 1.4 | $16.4{ }^{\text {c }}$ | $4 \cdot 8$ | 1.7 |
| 6 | - |  | $41 \cdot 8$ | $5 \cdot 3$ | $2 \cdot 0$ | - | - | $41 \cdot 6$ | $5 \cdot 4$ | 1.9 |
| 7 | $41 \cdot 2$ | $4 \cdot 45$ | $38 \cdot 1$ | $4 \cdot 7$ | 1.75 | $40 \cdot 7$ | 3.4 | $38 \cdot 7$ | $5 \cdot 0$ | 1.75 |
| 8 | - | - | $38 \cdot 7$ | $4 \cdot 8$ | 1.7 | - | - | 38.7 | $5 \cdot 0$ | 1.75 |
| 9 | 32.5 | 1.9 | $35 \cdot 5$ | $4 \cdot 4$ | 1.7 | 31.8 | 1.8 | $35.3{ }^{\text {c }}$ | $4 \cdot 6$ | 1.6 |
| 10 | - | - | $30.3{ }^{\text {c }}$ | $3 \cdot 9$ | 1.3 | - | - | $30 \cdot 6{ }^{\text {c }}$ | $4 \cdot 0$ | 1.4 |
| 11 | $54 \cdot 3$ | $5 \cdot 2$ | $13 \cdot 8$ | $7 \cdot 8$ | $2 \cdot 9$ | $54 \cdot 8$ | $3 \cdot 8$ | 14.5 | $7 \cdot 9$ | 2.75 |
| 12 | $57 \cdot 2$ | $5 \cdot 9$ | $12 \cdot 1$ | $7 \cdot 1$ | 2.5 | 57.7 | $4 \cdot 8$ | $13 \cdot 1$ | $7 \cdot 1$ | $2 \cdot 5$ |
| 13 |  |  | $12 \cdot 5$ | $6 \cdot 9$ | $2 \cdot 3$ | 57. |  | $13 \cdot 1$ | $7 \cdot 1$ | $2 \cdot 5$ |

${ }^{c}$ Easily hydrolysable.
The magnitude of these shifts was 109 and $125 \mathrm{~cm} .^{-1}$ respectively. If the $\mathrm{P}=\mathrm{O}$ band in the aryl phosphate complex had moved to a lower frequency by about the same amount it would appear in the region of the $\mathrm{P}-(\mathrm{O}-\mathrm{C})$ absorption band at $1240-1190 \mathrm{~cm} .^{-1}$. In fact, in the complexes the intensity of this band had increased.

The new band at $1027-1050 \mathrm{~cm} .^{-1}$ in the complexes is probably due to the shift of ( $\mathrm{P}-\mathrm{O}$ ) -C absorption ( $980 \mathrm{~cm} .^{-1}$ ) to higher frequencies.

The formula suggested for the complexes is $(\mathrm{RO})_{3} \mathrm{S+}=\mathrm{O}-{ }^{\delta-} \mathrm{BX}_{3}$.
Sheldon and Tyree ${ }^{9}$ reported the spectra of phosphoryl halides, triphenylphosphine oxide, and their addition compounds with metal halides such as tin and titanium tetrachloride and tetrabromide and ferrous bromide. From the shift of $\mathrm{P}=\mathrm{O}$ band they suggested that oxygen serves as donor and this produces a shift of $90-55 \mathrm{~cm} .^{-1}$ to lower frequency. For the phosphoryl halide-boron trihalide complexes there was a shift of

[^1]$12-18 \mathrm{~cm} .^{-1}$ to higher frequency. This suggests that halogen serves as donor, giving the ionic structure $\mathrm{POX}_{2}{ }^{+} \mathrm{BX}_{4}^{-}$as suggested by Greenwood and Wade ${ }^{\mathbf{1 0}}$ for the $\mathrm{GaCl}_{3}, \mathrm{POCl}_{3}$ complex.

The spectra of the complexes of boron trichloride and a diaryl phosphorochloridate or an aryl phosphorodichloridate were difficult to interpret, but there was some indication of a $\mathrm{P}=\mathrm{O}$ band shift to higher frequency, and this suggests that chloride ion might be donor.

## Experimental

Triaryl Phosphate-Boron Trihalide Complexes.-The triaryl phosphate ( 1 mol. ), usually in methylene dichloride, was slowly added to boron trichloride ( 1 mol .) at $-80^{\circ}$. Volatile matter was removed at about $23^{\circ} / 15 \mathrm{~mm}$., and the complex washed with pentane and held at about $23^{\circ} / 0 \cdot 2 \mathrm{~mm}$. for 2 hr . The phosphate was added to the tribromide ( 1 mol .) in n-pentane ( $c a$. $20 \mathrm{c.c}$.) at $c a$. $-30^{\circ}$, and to the trifluoride ( 1 mol .) in ether at $-80^{\circ}$. Results are recorded in Table 1.

The triphenyl phosphate-boron trichloride complex ( 4.95 g .) retained its weight and easily hydrolysable chlorine at $100^{\circ}$ for 5 hr . and almost entirely at $200^{\circ}$ for 3 hr . When the temperature was raised under reduced pressure, triphenyl phosphate ( $3 \cdot 25$ g., $89 \cdot 3 \%$ ), b. p. 170 $174^{\circ} / 0 \cdot 2 \mathrm{~mm}$., m. p. $40^{\circ}$, and a residue ( $0 \cdot 11 \mathrm{~g}$.) were obtained. Addition of butan-1-ol ( 2.16 g ., 3 mol .) to the same complex ( 4.3 g ., 1 mol .) at $-80^{\circ}$, the mixture then being allowed to warm to $24^{\circ}$, led to evolution of hydrogen chloride ( 1.55 mol .) (the remainder at 15 mm .) and the isolation of tributyl borate ( $1.52 \mathrm{~g} ., 67 \cdot 8 \%$ ), b. p. $112^{\circ} / 15 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} 1 \cdot 4100$ (Found: B, $4 \cdot 80$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~B}: \mathrm{B}, 4.72 \%$ ), and triphenyl phosphate ( $2.07 \mathrm{~g} ., 65 \cdot 3 \%$ ), b. p. $162^{\circ} / 0.05 \mathrm{~mm}$., m. p. $44^{\circ}$. There was a residue ( 0.95 g .). On addition of excess of water to the same complex ( 7.9 g .) in ether ( $30 \mathrm{c} . \mathrm{c}$.) and evaporation of the ethereal layer triphenyl phosphate ( 5.7 g ., $98 \cdot 2 \%$ ) was obtained.

The tri- $m$-tolyl phosphate-boron trichloride complex lost little weight or easily hydrolysable chlorine at $300^{\circ}$ in 3 hr .; but mixed with butan-1-ol ( 3 mol .), at $-80^{\circ}$, and warmed to $20^{\circ}$ it gave hydrogen chloride ( $96.6 \%$ ), tributyl borate ( $73 \%$ ), b. p. $115 \% / 18 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} \mathbf{1} \cdot \mathbf{4 1 0 5}$ (Found: B, $4 \cdot 35 \%$ ), and tri- $m$-tolyl phosphate ( $81 \cdot 7 \%$ ), b. p. $158-162^{\circ} 0.1 \mathrm{~mm}$. Similarly hydrogen chloride, tributyl borate ( $85 \%$ ), b. p. $108-112^{\circ} / 20 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} 1.4098$ (Found: B, $4.65 \%$ ), and tri-p-chlorophenyl phosphate ( $71 \%$ ), m. p. $85-88^{\circ}$, b. p. $160-170^{\circ} / 0 \cdot 1 \mathrm{~mm}$., were obtained from the corresponding complex. The boron trichloride complex with 2,4-dichlorophenyl phosphate was stable up to $300^{\circ}$. The triphenyl phosphate-boron tribromide complex was rather less stable; the corresponding boron trifluoride complex lost weight and ionisable fluorine very slowly at $300^{\circ}$.

Interaction of Phenyl Phosphorodichloridate and Boron Trichloride. -The dichloridate ( $5 \cdot 4 \mathrm{~g}$., 1 mol .) in n-pentane ( $30 \mathrm{c} . \mathrm{c}$.) was added to boron trichloride ( 3.3 g .) at $-80^{\circ}$. Phenyl phosphoro-dichloridate-boron trichloride complex ( $7.97 \mathrm{~g} ., 95 \%$ ), m. p. $35-42^{\circ}$ (Found: $\mathrm{Cl}, 53.7$; P, 8.8; B, 3.24. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Cl}_{5} \mathrm{~PB}$ requires $\mathrm{Cl}, 54 \cdot 0 ; \mathrm{P}, 9 \cdot 4 ; \mathrm{B}, \mathbf{3 . 3 0} \%$ ), was filtered off at $22^{\circ}$ and kept at $22^{\circ} / 0.2 \mathrm{~mm}$. for 1 hr . On being slowly heated to $300^{\circ}$, the complex ( 4.06 g .) afforded phosphoryl chloride-boron trichloride complex ( $1 \cdot 23 \mathrm{~g} ., 73 \cdot 5 \%$ ) (Found: $\mathrm{Cl}, 77 \cdot 8 ; \mathrm{B}, 3 \cdot 83 \%$ ), m. p. $68-71^{\circ}$, boron trichloride ( 1.0 g ., $69 \%$ ), and diphenyl phosphorochloridate ( $1.03 \mathrm{~g} ., 61.9 \%$ ), b. p. $150-156^{\circ} / 0 \cdot 5 \mathrm{~mm}$. (Found: $\mathrm{Cl}, 13 \cdot 6$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{ClP}: \mathrm{Cl}, \mathbf{1 3} \cdot 0 \%$ ). Heated under reduced pressure, however, the complex ( $\mathbf{1 4 . 3 8}$ g.) gave phenyl phosphorodichloridate ( 9.5 g ., $94 \cdot 1 \%$ ), b. p. $58-64^{\circ} / 0 \cdot 1 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{24} 1 \cdot 5228$ (Found: Cl, 32.8. Calc. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{P}: \mathrm{Cl}$, $33.8 \%$ ).
p-Chlorophenyl phosphorodichloridate-boron trichloride complex ( 9.01 g., $97 \%$ ), m. p. 46- $50^{\circ}$ (Found: C, 20.7; H, 1.7; easily hydrolysable Cl, 48.8; P, 7.8; B, 2.9. $\quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{Cl}_{6} \mathrm{~PB}$ requires C, $19.9 ; \mathrm{H}, \mathrm{l} \cdot 1$; e.h. $\mathrm{Cl}, 48.9 ; \mathrm{P}, 8.8 ; \mathrm{B}, 3.0 \%$ ), was similarly obtained from the dichloridate $(6.28 \mathrm{~g}$.) in n-pentane. It ( 4.04 g .) gave phosphoryl chloride-boron trichloride complex ( 1.34 g ., $88 \cdot 7 \%$ ), m. p. $67-68^{\circ}$ (Found: Cl, 78.8 ; B, $3.9 \%$ ), boron trichloride ( $0.42 \mathrm{~g} ., 64 \cdot 6 \%$ ), and di- $p$ chlorophenyl phosphorochloridate ( $0.9 \mathrm{~g} ., 47.9 \%$ ), b. p. $168-172^{\circ} / 0.2 \mathrm{~mm}$. (Found: $\mathrm{Cl}, 10.3 \%$ ), when slowly heated to $300^{\circ}$ at atmospheric pressure. There was a residue ( 0.72 g ).

Interaction of Diphenyl Phosphorochloridate with Boron Trichloride.-The chloridate ( 4.58 g ., 1 mol .), suspended in n -pentane ( $20 \mathrm{c} . \mathrm{c}$.), was added slowly to boron trichloride ( 2.36 g .) at $-80^{\circ}$, and the complex ( 6.47 g ., $98.3 \%$ ), m. p. $54-64^{\circ}$ (Found: Cl, $35 \cdot 1$; P, 8.9 ; B, $2 \cdot 9$.

[^2]$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Cl}_{4} \mathrm{BP}$ requires $\mathrm{Cl}, \mathbf{3 6 \cdot 7} ; \mathrm{P}, 8 \cdot 0 ; \mathrm{B}, \mathbf{2 \cdot 8} \%$ ), was filtered off, washed with n -pentane, and kept at $24^{\circ} / 0.5 \mathrm{~mm}$. for 2 hr . At $100^{\circ}$ the complex lost no weight, but as the temperature was raised to $300^{\circ}$ the phosphoryl chloride-boron trichloride complex ( $99.7 \%$ ), m. p. $66-68^{\circ}$ (Found: Cl, 76.2; B, 4.17. Calc. for $\mathrm{OCl}_{6} \mathrm{~PB}: \mathrm{Cl}, 78 \cdot 6 ; \mathrm{B}, 3.99 \%$ ), sublimed; a residue afforded an unidentified mixture on distillation. However, when the complex ( $\mathbf{1 0 . 4} \mathrm{g}$.) was heated under reduced pressure, the original chloridate ( $6 \cdot 54 \mathrm{~g} ., 90 \%$ ), b. p. $132-136^{\circ} / 0 \cdot 2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{24} 1.5492$ (Found: Cl, 13.5 . Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{ClP}: \mathrm{Cl}, 13.0 \%$ ), and boron trichloride ( $2.61 \mathrm{~g} ., 82.5 \%$ ) were obtained.

Di-p-chlorophenyl phosphorochlovidate-bovon trichloride complex (70.7\%), m. p. 49-55 ${ }^{\circ}$ (Found : easily hydrolysable $\mathrm{Cl}, 31 \cdot 8 ; \mathrm{P}, 6 \cdot 9 ; \mathrm{B}, 2 \cdot 3 . \quad \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{Cl}_{6} \mathrm{~PB}$ requires easily hydrolysable $\mathrm{Cl}, 31 \cdot 2 ; \mathrm{P}, 6 \cdot 8 ; \mathrm{B}, \mathbf{2} \cdot 4 \%$ ), was similarly obtained, and on being heated slowly to $300^{\circ}$ it afforded phosphoryl chloride-boron trichloride complex ( $98 \cdot 5 \%$ ), m. p. $68^{\circ}$ (Found: Cl, $78 \cdot 7$; $\mathrm{B}, 3 \cdot 83 \%$ ), boron trichloride ( $28 \%$ ), and tri-p-chlorophenyl phosphate ( $56.6 \%$ ), m. p. $90-95^{\circ}$, b. p. $180-$ $200^{\circ} / 0.4 \mathrm{~mm}$.

Phosphoryl Halide-Boron Trihalide Complexes.-Phosphoryl chloride (6.71 g., 1 mol.) in npentane ( $30 \mathrm{c.c}$.) was added dropwise to boron trichloride ( $5 \cdot 33 \mathrm{~g} ., 1 \mathrm{~mol}$.) at $-80^{\circ}$. The white complex ( 8.32 g., $70 \%$ ), m. p. $72-73^{\circ}$ (Found: Cl, $78 \cdot 5$; P, $11 \cdot 1 ; \mathrm{B}, 4 \cdot 3$. Calc. for $\mathrm{OCl}_{6} \mathrm{~PB}$ : $\mathrm{Cl}, 78 \cdot 6 ; \mathrm{P}, 11.5 ; \mathrm{B}, 4.0 \%$ ), was filtered off at $24^{\circ}$ and kept at $24^{\circ} / 20 \mathrm{~mm}$. for 1 hr . On being heated to $100^{\circ}$, the complex ( 3.32 g .) gave sublimed complex ( $2.01 \mathrm{~g} ., 60.5 \%$ ), m. p. $70-71^{\circ}$ (Found: Cl, 77.8 ; B, $3.9 \%$ ), boron trichloride ( $0.44 \mathrm{~g} ., 30.6 \%$ ), and phosphoryl chloride ( $0 \cdot 65 \mathrm{~g}$., $\mathbf{3 4} \cdot 6 \%$ ) (Found: Cl, $66 \cdot 4 \%$ ).

The white phosphoryl bromide-bovon tribromide complex ( $\mathbf{7} \cdot \mathbf{1 3} \mathrm{g} ., \mathbf{9 5 \cdot 2} \%$ ) m. p. $150-154^{\circ}$ (Found: $\mathrm{Br}, 88 \cdot 8 ; \mathrm{P}, 5 \cdot 7 ; \mathrm{B}, 2 \cdot 2$. $\mathrm{OBr}_{6} \mathrm{~PB}$ requires $\mathrm{Br}, 89 \cdot 4 ; \mathrm{P}, 5 \cdot 8 ; \mathrm{B}, 2 \cdot 0 \%$ ), was obtained by addition of phosphoryl bromide ( $4.01 \mathrm{~g} ., 1 \mathrm{~mol}$.) in n-pentane ( $25 \mathrm{c} . \mathrm{c}$. ) and of methylene dichloride ( $5 \mathrm{c.c}$. ) to boron tribromide ( 3.67 g ., 1.05 mol .) in pentane ( $15 \mathrm{c.c}$. ) at $-80^{\circ}$. The

Table 2. Infrared spectra.

|  | Compounds | $\mathrm{P}=\mathrm{O}$ | $\mathrm{P}-(\mathrm{O}-\mathrm{C})$ | $(\mathrm{P}-\mathrm{O})-\mathrm{C}$ | $\mathrm{P}=\mathrm{O}$ | $\mathrm{P}-(\mathrm{O}-\mathrm{C})$ | P-O)-C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(\mathrm{PhO})_{3} \mathrm{PO} .$. | 1297 | 1188; 1160 | 959.7 |  |  |  |
| 2 | , $\mathrm{BF}_{3}$ | 1190-1149 | 1179; 1159 | 1033 | 107-148 | $9, \quad 1$ | $-73 \cdot 3$ |
| 3 | , $\mathrm{BCl}_{3}$ | 1190-1149 | 1175; 1153 | 1043 | 107-148 | 13, 7 | $-83.3$ |
| 4 | , $\mathrm{BBr}_{3}$ | 1190-1149 | 1172; 1152 | 1050 | 107-148 | 16, | $-90 \cdot 3$ |
| 5 | $\left(m-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right){ }_{3} \mathrm{PO}$ | 1299 | 1190; 1139 | $969 \cdot 1$ | - |  |  |
| 6 | , $\mathrm{BF}_{3}$ | 1190-1136 | 1183; 1161 | 1029 | 109-163 | 7, -22 | $-59.9$ |
| 7 | , $\mathrm{BCl}_{2}$. | 1190-1124 | 1179; 1140 | 1045 | 109-151 | 11, -1 | $-75.9$ |
| 8 | , $\mathrm{BBr}_{3}$ | 1190-1124 | 1190; 1140 | 1049 | 109-151 | $0-1$ | $-79.9$ |
| 9 | $\left(p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right)_{3} \mathrm{PO}$ | 1295 | 1190; 1164 | 970.9 | - |  | - |
| 10 | ,,,$^{\text {, } \mathrm{BF}_{3} \ldots}$ | 1205-1163 | 1190; 1166 | 1031 | 90-132 | -2 | $-60 \cdot 1$ |
| 11 | , $\mathrm{BCl}_{3} \ldots$ | 1190-1149 | 1182; 1160 | 1037 | 105-146 | 8,4 | $-66 \cdot 1$ |
| 12 | , $\mathrm{BBr}_{3} \ldots$ | 1190-1149 | 1182; 1159 | 1040 | 105-146 | 8, 5 | $-69 \cdot 1$ |
| 13 | $\left(p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right)_{3} \mathrm{PO}$ | 1302 | 1215; 1190 | $969 \cdot 1$ | - | - |  |
| 14 | $\left(p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right){ }_{3} \mathrm{PO}, \mathrm{BCl}_{3} \ldots$ | 1190-1149 | 1188; 1160 | 1033 | 112-153 | 27, 30 | $-63.9$ |
| 15 | , , $\mathrm{BBr}_{3}$ | 1190-1149 | 1181; 1159 | 1036 | 112-153 | 34, 31 | $-66.9$ |
| 16 | $\left(2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{O}\right)_{3} \mathrm{PO} \ldots \ldots .$. | 1312 | 1217 | $970 \cdot 0$ | - |  | - |
| 17 | , $\mathrm{BCl}_{3}$ | 1205-1163 | 1189 | 1027 | 107-149 | 28 | $-57$ |
| 18 | , $\mathrm{BBr}_{3}$ | 1220-1163 | 1218; 1166 | 1035 | 92-149 | 5,51 | -65 |
| 19 | $(\mathrm{PhO})_{2} \mathrm{POCl}$ | 1300 | 1179; 1157 | $966 \cdot 4$ | - |  |  |
| 20 | ,,, $\mathrm{BCl}_{3} \quad \ldots . . .$. | 1337 | 1179; 1144 | $\begin{aligned} & 970 \cdot 9 \\ & 930 \cdot 1 \end{aligned}$ | -37 | 0,13 | $\begin{array}{r} -4 \cdot 5 \\ 36 \cdot 3 \end{array}$ |
| 21 | $\left(p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right)_{2} \mathrm{POCl}$ | 1304 | 1185; 1160 | $970 \cdot 9$ | - | - | - |
| 22 | ,, ${ }^{\text {, } \mathrm{BCl}_{3}}$ | 1342 | 1188; 1160 | 1035 | -38 | -3, | -64•1 |
| 23 | $\mathrm{PhO} \cdot \mathrm{POCl}_{2}$ | 1302 | 1181; 1160 | $946 \cdot 9$ | - | - | - |
| 24 | , , , $\mathrm{BCl}_{3} \ldots \ldots \ldots .$. | 1342 | 1172; 1156 | $990 \cdot 1$ | -40 | 9,4 | $-43 \cdot 2$ |
| 25 | $p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O} \cdot \mathrm{POCl}_{2} \ldots \ldots .$. | 1305 | 1188; 1161 | $950 \cdot 6$ |  |  | - |
| 26 | ,,, $\mathrm{BCl}_{3} \ldots$ | 1348 | 1182; 1157 | $982 \cdot 0$ | -48 | 6, 4 | -31.4 |
| 27 | $\mathrm{POCl}_{3}$ | 1299 |  |  |  |  |  |
| 28 | , ${ }^{\text {, } \mathrm{BCl}_{3}}$ | 1311 | - | - | -12 |  |  |
| 29 | $\mathrm{POBr}_{3}$ | 1271 | - | --- |  |  |  |
| 30 | ,', $\mathrm{BBr}_{3}$ | 1289 | - |  | -18 |  |  |
| 31 | $(\mathrm{Ph})_{3} \mathrm{PO}$ | 1182 | --- |  |  |  |  |
| 32 | , , $\mathrm{BCl}_{3}$ | 1073 |  |  | 109 |  |  |
| 33 | $\left(\mathrm{Bu}^{1} \mathrm{O}\right)_{3} \mathrm{PO}$ | 1258 |  | 1025 |  |  |  |
| 34 | ,' , $\mathrm{BCl}_{3}$ | 1133 | - | 1057 | 125 | - | -32 |

complex was filtered off at $20^{\circ}$, washed with pentane, and kept at $20^{\circ} / 0 \cdot 1 \mathrm{~mm}$. for 1 hr . It ( $4 \cdot 3 \mathrm{~g}$.) was stable at $100^{\circ}$ for 1 hr , but on being heated to $200^{\circ}$ gave sublimed complex ( $2 \cdot 82 \mathrm{~g}$., $65 \cdot 6 \%$ ) (Found: Br, 88.2 ; B, $\mathbf{2 . 3} \%$ ), boron tribromide ( $0.35 \mathrm{~g} ., \mathbf{1 7 . 5} \%$ ), and a residue of phosphoryl bromide ( $0 \cdot 8 \mathrm{~g} ., 34 \cdot 9 \%$ ) (Found: Br, $85 \cdot 3 \%$ ).

Triphenylphosphine Oxide-Boron Trichloride Complex.-Triphenylphosphine oxide ( 2.37 g ., 1 mol .) in methylene dichloride ( $20 \mathrm{c} . \mathrm{c}$.) was added dropwise to boron trichloride ( $1 \cdot 2 \mathrm{~g} ., 1 \cdot 2 \mathrm{mols}$.) at $-80^{\circ}$. The white complex ( 3.2 g., $94.9 \%$ ), m. p. $207-208^{\circ}$ (Found: $\mathrm{Cl}, 26 \cdot 2 ; \mathrm{B}, 2 \cdot 8$; P , 7.8. $\quad \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OCl}_{3} \mathrm{BP}$ requires $\mathrm{Cl}, 26.9 ; \mathrm{B}, 2 \cdot 7 ; \mathrm{P}, 7.9 \%$ ), was filtered off at $20^{\circ}$, washed with pentane, and kept at $20^{\circ} / 0 \cdot 1 \mathrm{~mm}$. for 3 hr .

Infraved Spectra.-The spectra of the compounds listed in Table 2 were measured on a Grubb-Parsons double-beam spectrometer with a sodium chloride prism. The spectra of the solids were measured in chloroform solutions and of the liquids in capillary fillings; some solids were examined in Nujol suspension.

We thank Mr. H. Pyszora for the infrared spectral measurements, and the National College of Rubber Technology (Northern Polytechnic) for providing facilities for these.

Northern Polytechnic, Holloway Road, London, N.7.


[^0]:    1 Fertig and Gerrard, Chem. and Ind., 1956, 83; Fertig, Gerrard, and Herbst, J., 1957, 1488; Currell and Gerrard, Chem. and Ind., 1958, 1289.
    ${ }_{2}$ Gerrard and Strickson, ibid., 1958, 860.
    ${ }^{3}$ Frazer, Gerrard, and Patel, ibid., 1959, 90, 728.
    ${ }^{4}$ Gerrard and Griffey, ibid., 1959, 55.
    ${ }^{5}$ Brown and Holmes, J. Amer. Chem. Soc., 1956, 2173.

[^1]:    ${ }^{6}$ Meyrick and Thompson, J., 1950, 225; Daasch and Smith, Analyt. Chem., 1951, 23, 853; Bellamy and Beecher, J., 1952, 475.

    7 Idem, J., 1953, 728.
    ${ }^{8}$ Gerrard and Griffey, unpublished work.
    ${ }^{9}$ Sheldon and Tyree, J. Amer. Chem. Soc., 1958, 80, 4775; 1959, 81, 2290.

[^2]:    ${ }^{10}$ Greenwood and Wade, J., 1957, 1517.

